Smart Buildings: Driving Resilience, Efficiency and Change

Five Part Webinar Series

Episode Five

The PI System as the engineering command center of a complex cogeneration power plant

Smart Building: Driving Resilience, Efficiency, and Change

- Episode 1 Holistic Facility Optimization –Utilizing machine learning for dispatch, fault detection and M&V
- **Episode 2** Smart & Secure Facilities Operations: A Data-Driven Framework
- Episode 3 Achieving Savings through Improved Thermal Energy Storage Dispatch and Data Science at UC Davis
- Episode 4 Smart Buildings meet High Performance Buildings Staying Ahead of the Pack - Duquesne University

Recorded @ https://explore.osisoft.com/2020-q2-facilties

Operational Data Infrastructure: Sensor to Community

OSIsoft Built on 40 Years of Experience

2B+ _{Streams} 20,800+ _{Installations}, 4,000+ _{Customers} in 140+ Countries

Facilities & Data Centers Over 135 million square feet of facilities are monitored by the PI System

Eli Lilly Roche Pfizer National Institute of Health Milwaukee Medical Center Harvard Medical School NASA Massachusetts Institute of Technology University Of Massachusetts University of Connecticut Department of Defense Purdue University University of Vermont Harvard University Carnegie Mellon University University of Rochester US Department of Navy **Toronto Pearson Airport** Veolia

Toyota Kellogg University of California, Davis University of Maryland Lawrence Livermore National Laboratory Department of Defense/Intelligence **US Army** United Nations eBay PayPal HPE vXchnge Aligned Energy @Tokyo Softbank Qualcomm

The PI System as the engineering command center of a complex cogeneration power plant

Steven Lemay, Plant Manager, University of Massachusetts Priscila Gameiro, Automation Engineer, Radix Engineering and Software

Topics in Agenda

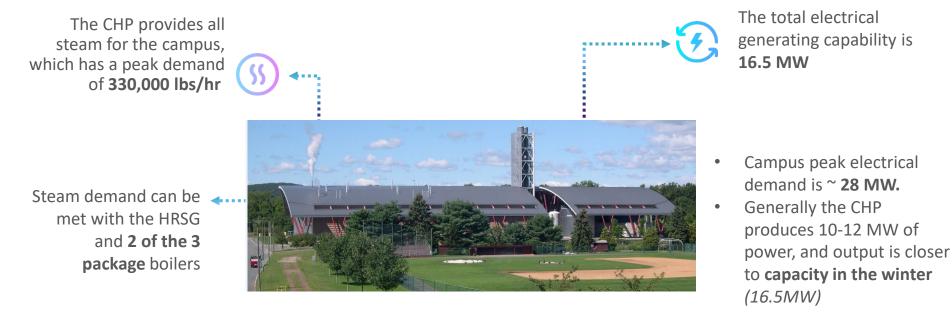
- A little about the University of Massachusetts
- Business Challenges
- Technical Challenges
- Cybersecurity Concerns
- Work Carried Out
- Results Obtained And Business Impact

The University of Massachusetts

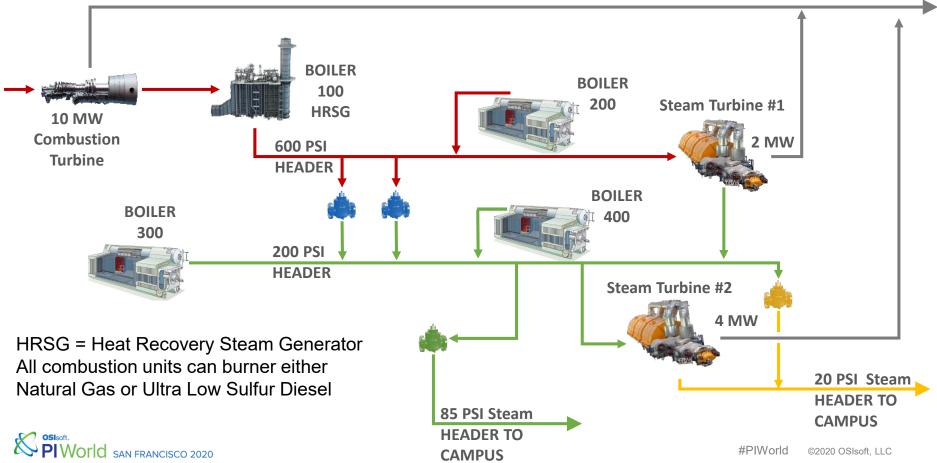
UMassAmherst The Commonwealth's Flagship Campus

SAN FRANCISCO 2020

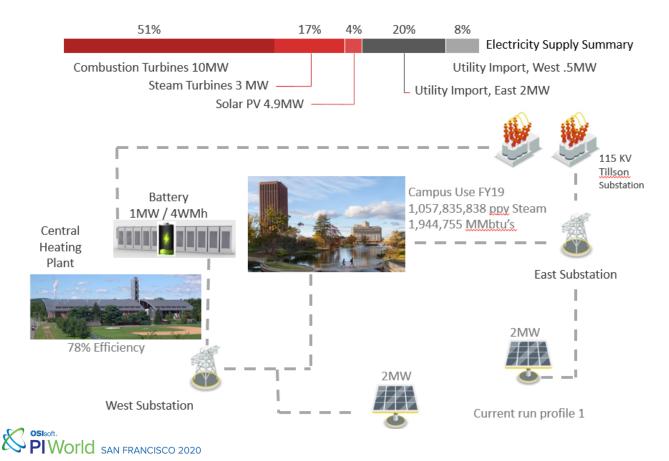
University of Massachusetts



Since 2004, expansion projects have **added \$1 billion** in **new facilities**, **buildings**, and infrastructure to the campus.


85% Building Energy Use
06% Steam Distribution Heat Loss
09% In-Plant Steam Use for Process Loads

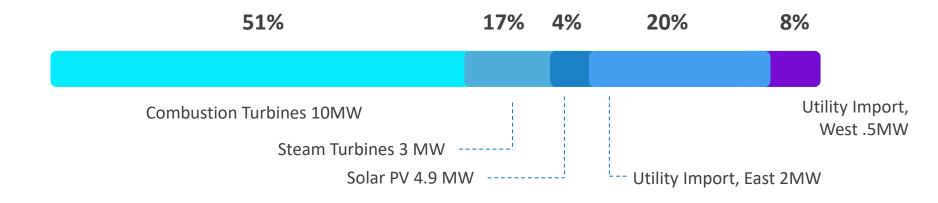
The University of Massachusetts



Inside the Central Heating Plant

13.8KV BUS FOR CAMPUS

The Big Picture - Energy Command Center


Produced67%Solar4%Purchased29%

Electrical FY19

#PIWorld ©2020 OSIsoft, LLC 14

The Big Picture - Energy Command Center

Electricity Supply Summary

Business Challenges

Business Challenges

The **fast-growing** student body* and new building projects continue to increase demand for steam and electricity *Over the last decade, the campus has seen a 17% increase in enrollment

to the table of the table of the table of table

Wide variety of control systems, instrumentation, and multiple network challenges feeding a data driven approach to optimize operations

Data is difficult to visualize outside of the CHP control room due to cybersecurity concerns

Various **plant configurations**, **fluctuations in demand**, weather, and fuel prices make decision making a complex task

Technical Challenges

Technical Challenges

Data comes from multiple systems, networks and physical locations:

Technical Challenges

Deliver **better visibility** to Operators

Building **a set of dashboards** that properly reflect the needs of engineers and management teams

Predict operating conditions that **optimize costs and production** given dozens of possible plant configurations

SAN FRANCISCO 2020

Add value to student education while maintaining campus cybersecurity

Identifying instrument tags, KPIs, and organizing them into **an intuitive framework**

Tracking fuel cost information in **real time**

Operate plant **more effectively and efficiently** considering fluctuations in demand, weather, and fuel prices

Work Carried Out

Work Carried Out

Phase 1

Process Monitoring and Asset

- Major Process Equipment
- Support equipment
- Collect data from a variety of systems and historize
- Model the data
- Visualize the process

Phase 2

Process and Cost Optimization

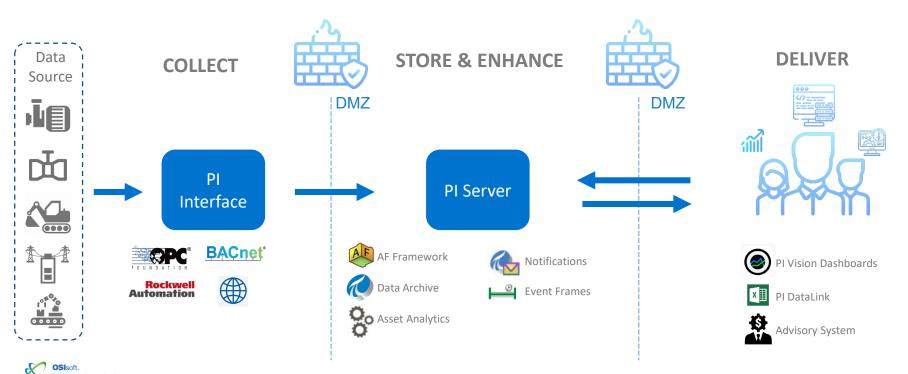
- Real time price data
- Energy production
- Steam generation
- Optimization

Phase 1

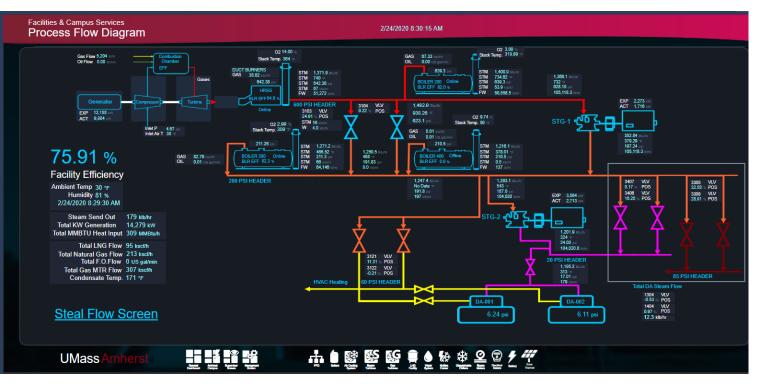
Solution

- Leverage OSIsoft PI suite of interfaces
- An intuitive hierarchy for each piece of equipment
- Use of PI Asset Framework to store tags, calculations, templates, analyses, and events
- PI Vision dashboards to integrate with AF and provide real time trend data and analytics to end users

Phase 2


- Using Thermoflex to improve efficiency and identify opportunities in the plant
- Use engineering analyses, PI Analytics and PI event frames to assist plant engineers and management.

Phase 1 – Architecture and Cybersecurity


SAN FRANCISCO 2020

The PI System limits the direct access to critical system while expanding the use of information the **Topology** used to allow the data security

Phase 1 - Dashboard

CHP Process Visalization Displays

San Francisco 2020

Phase 1 - Dashboard

Management Screen


OSIsoft

#PIWorld ©2020 OSIsoft, LLC

Phase 1 - Dashboard

Gas Turbine

#PIWorld ©2020 OSIsoft, LLC

Phase 1 - Dashboards

PI Vision Screen Around the Campus

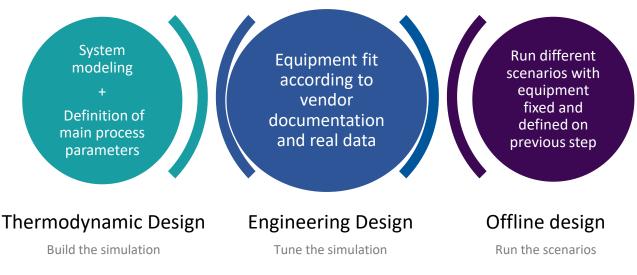
Phase 1 – Steam Meter Alerts

The solution implemented reduce the time response from 1-2 months to one 1 day and

maintenance cost

Steam Meter alert considered the number of events in 24hrs and the temperature outside the plant, to alert the maintenance team of problem.

<u>Meters</u>							
es & Campus Services am Meters Cul	rrent Value		5/14/20	020 11:17:15 AM			
Housing Build	linas	Academic Buildi	nas	Auxiliary Servic	res Buildings	Athletic Build	lings
	11,935.72 lb/hr		24,573.91 lb/hr		192.97 lb/hr		2.914.49 lb/hr
	11,955.12 10/11			Total	192.97 10/11		2,514.45 10/11
Honors College	240.11 lb/hr	Africa	0.00 lb/hr	Berkshire DC	0.00 lb/hr	BoydenGym	1,783.00 lb/hr
Baker	531.00 lb/hr	Arnold	0.00 lb/hr	Campus Center LP	0.00 lb/hr	Champion	746.87 lb/hr
Brett	277.75 lb/hr	Bartlett	1,330.00 lb/hr	Campus Center MP	0.00 lb/hr	Hicks	208.00 lb/hr
Brooks	289.75 lb/hr	Chenoweth	398.32 lb/hr	Franklin DC	186.05 lb/hr	MullinsCenter	Pt Created lb/hr
Brown	626.00 lb/hr	Chenoweth(OldChenoweth)	57.03 lb/hr	Hampden DC	6.92 lb/hr	RecreationCenter	0.00 lb/hr
Butterfield	456.75 lb/hr	CSC	1,743.09 lb/hr	Hampshire DC	0.00 lb/hr	Totman	176.63 lb/hr
Cance	229.13 lb/hr	Design Building	1.30 lb/hr	Parking Garage	0.00 lb/hr		
Cashin	1.46 lb/hr	Dickinson	74.50 lb/hr	Student Union	0.00 lb/hr		
Chadbourne		Draper	0.00 lb/hr	Worcester DC	0.00 lb/hr		
	427.00 lb/hr	Elab	37.59 lb/hr				
Coolidge	15.31 lb/hr	Elab2	0.00 lb/hr	Event Name Asset PaigeHP Steam Meter i	-	Y End Time Y	Acknowledgement
Crabtree	0.00 lb/hr	Fernald	96.69 lb/hr	s not Updating	2/27/2019 1:00:	00 PM In Progress	Acknowledged
Dickinson	218.25 lb/hr	FineArts	1,023.00 lb/hr	PaigeLP Steam Meter i s Not Updating	2/27/2019 1:00:	00 PM In Progress	Acknowledged
Dwight	361.50 lb/hr	Flint	67.44 lb/hr	Berkshire DC Steam M	2/27/2019 1:00:	00 PM In Progress	Acknowledge
Field	10.58 lb/hr	<	· · ·	Hampden DC Steam M	2/27/2019 1:00:	00 PM In Progress	Acknowledge

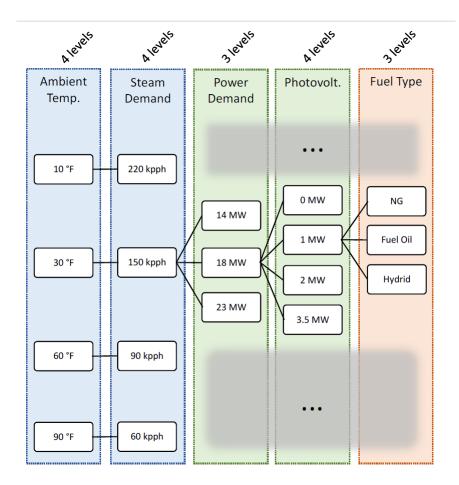

SINGER PIWORIC SAN FRANCISCO 2020

#PIWorld ©2020 OSIsoft, LLC

Phase 2 - Energy Efficiency Assessment

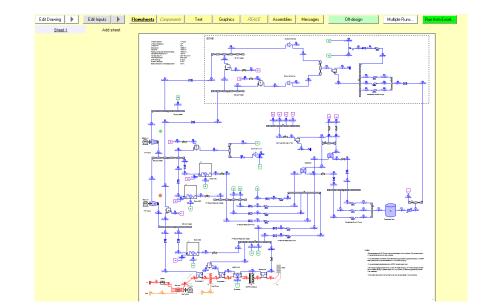
An energy assessment was performed to **find useful information** for the development of an **Advisory System tool** to help operators keep the plant always operating **at maximum possible efficiency**.

The assessment was divided in three main phases:



Phase 2 - Scenario Definitions

Using the decision tree to chose the best scenario according to the following variables:


- Ambient temperature
- Steam demand
- Power demand
- Photovoltaic capacity
- Fuel Type availability

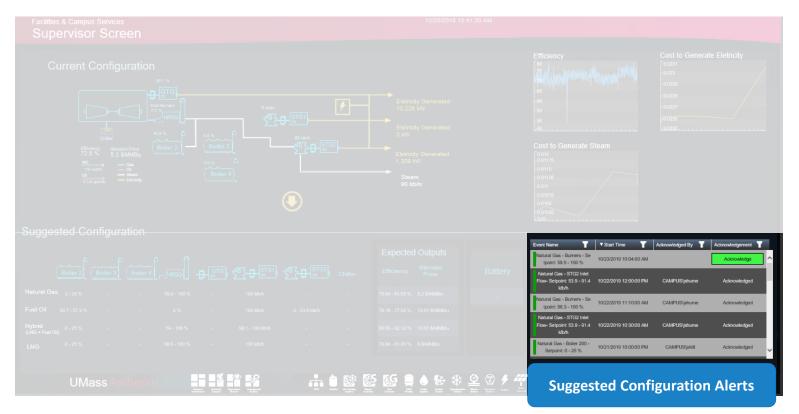
Phase 2 – Goals Achieved

- Develop custom tools to store real time price information
- Compile representative operating configurations of the CHP
- Simulate the plant under configurations and store model within the PI system. **About 150** scenarios simulated.
- An operations advisory system for operators and engineers
- Develop visualizations to provide to plant management to monitor **cost savings**

Phase 2 – Scenarios Simulated

Conditions					Optimal Configuration							Results					
ID	Amb. Temp. [°F]	Steam Demand [kpph]	Power Demand [MW]	Photov. Capacity [MW]	Fuel Type [NG/FO/HY]	GTG Load [%]	Chiller [ON/OFF]	DB Load [%]	STG-001 Inlet Flow [kpph]	STG-002 Inlet Flow [kpph]	BRL-200 Load [%]	BRL-300 Load [%]	BRL-400 Load [%]	CHP Gross Power [MW]	CHP Net Power [MW]	CHP Efficiency [%]	Purchased Power [MW]
134	90	60	23	2	HY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	10,865
135	90	60	23	1	ΗY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	11,865
136	90	60	23	0	ΗY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	12,865
137	90	60	18	3.5	ΗY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	4,365
138	90	60	18	2	ΗY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	5,865
139	90	60	18	1	ΗY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	6,865
140	90	60	18	0	ΗY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	7,865
141	90	60	14	3.5	ΗY	99,7	ON	48,6	68	35,5	0	0	0	11,128	10,100	77,13	0,400
142	90	60	14	2	ΗY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	1,865
143	90	60	14	1	ΗY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	2,865
144	90	60	14	0	ΗY	100	ON	48,3	68	35,5	0	0	0	11,163	10,135	77,14	3,865

PIWORID SAN FRANCISCO 2020


Phase 2 – Scenarios Simulated and PI System Integration

The scenarios are integrated through SQL Server Table

	al Table Define Table	Verbiorr						
Piter P								
	Temperature	Steam	Power	Photov. Capacity	NG Availability	Mode	GT Load	GT Gas Flow
	10	220	18	2	High	Natural Gas	100	133.57
	10	220	18	2	Low	Fuel Oil	100	0
	10	220	18	1	High	Natural Gas	100	133.57
	10	220	18	1	Low	Fuel Oil	100	0
	10	220	18	0	High	Natural Gas	100	133.57
	10	220	18	0	Low	Fuel Oil	100	0
	10	220	14	2	High	Natural Gas	69.1	115.13
	10	220	14	2	Low	Fuel Oil	100	0
	10	220	14	1	High	Natural Gas	77.6	120.63
	10	220	14	1	Low	Fuel Oil	100	0
	10	220	14	0	High	Natural Gas	86.3	125.76
	10	220	14	0	Low	Fuel Oil	100	0
	30	150	18	2	High	Natural Gas	100	128.76
	30	150	18	2	Low	Fuel Oil	100	0
	30	150	18	1	High	Natural Gas	100	128.76
	30	150	18	1	Low	Fuel Oil	100	0
	30	150	18	0	High	Natural Gas	100	128.76
	30	150	18	0	Low	Fuel Oil	100	0
	30	150	14	2	High	Natural Gas	78.4	116.26
	30	150	14	2	Low	Fuel Oil	100	0
	30	150	14	1	High	Natural Gas	87.3	121.2
	30	150	14	1	Low	Fuel Oil	100	0

Phase 2 - Dashboards

PI Vision Advisory Screen

San Francisco 2020

ECONOMIC IMPACT

Monitor **fuel usage** and **costs** associated with production

Saving money by:

Make or Buy Energy decision considering multiple fuels onsite, and live market data

Track Market data in real time

Electricity (LMP Day Ahead + Real Time) Natural Gas Day Ahead Static Contracted Prices and Volumes

Suggesting the **most efficiently configuration** to run the plant.

Integrating the **PI System** and the **Energy Assessment Study**

Charge or Discharge Battery (Energy Storage System)

Monitoring the **cost of electricity** and **campus demand** to advise the **best time to dispatch** this resource.

OPERATIONAL AWARENESS

Intuitive **dashboards** and consolidated data allows operators to have more insight into how their plant is operating.

Management dashboards and automatic reports make the **results easily accessible**.

Energy production and consumption data helps make **operating decisions** and meet **campus demand**.

С ПП	1
Ē	J

The created events frames allow the maintenance team to be **alerted when a meter is offline**.

Integration of many different system data in a unique one.

EDUCATIONAL IMPACT

Removing the CHP data from **behind a firewall** allows the students to gain insight to the operation of their campus and advances the University's curriculum.

Another advance is to allow display the **production results** to the entire campus

Central Heating Plant

Goal: Collect, model, and visualize process and instrument data. Use the data to drive optimization efforts to reduce costs and meet an increasing demand.

UMassAmherst The Commonwealth's Flagship Campus

CHALLENGES

- Multiple data locations
- Dozens of plant configurations
- Fluctuations in demand, weather, and fuel prices
- Assisting decision making for cost saving and optimization

SOLUTION

Use PI Interfaces

•

- PI Vision to create intuitive dashboards and as advisory system
 - Analytics engine to store KPIs, cost information, and configuration models

BENEFITS

- Data is available outside of the control room
- Advisory screens include real time cost and savings information
- Reduce operation cost by making real time decisions

"

"

Priscila Gameiro Automation Engineer Radix Engineering and Software

priscila.gameiro@radixeng.com.br

Steven Lemay CHP Plant Manager

University of Massachusetts slemay@facil.umass.edu

